
Page 1

C1 Technical Report 001
Library No.: S232,522

6 June 1989

COMPUTER VIRUSES:

PREVENTION, DETECTION, AND TREATMENT

by

Mario Tinto

This publication contains technical observations, opinions, and evidence
prepared for informal exchange among individuals involved with computer
security. The information contained herein represents the views of the author
and is not to be construed as representing an official position of the
National Computer Security Center.

Reviewed by: ________________________________

BLAINE W. BURNHAM
Chief, Criteria and Technical Guidelines Division

Released by: ________________________________

ELIOT SOHMER
Chief, Office of Computer Security Evaluations,
Publications and Support

Page 2

TABLE OF CONTENTS

Executive Summary 1

I. Introduction: The Symptoms 1

II. Treatment and Prevention 3
 A. Technical Measures 3
 1. Trusted Computing Base 3
 2. Access Controls 4
 a. Discretionary Access Control (DAC) 4
 b. Mandatory Access Control (MAC) 5
 3. Audit Trails 6
 4. Architecture 7
 5. Least Privilege/Role Enforcement 8
 6. Identification and Authentication 9
 B. Procedural and Administrative Measures 9
 1. Passwords and Password Management 10
 2. Configuration Control 11
 3. Operational Procedures 11
 4. Facility Management 11
 5. User Awareness 12
 6. System Evaluations 13
 C. Synopsis of Countermeasures 13

III. Summary 15

APPENDIX 17
I. The Issue 17

II. The Analysis 17
 a. Infection 17
 b. Effects of the Virus 19

References 20

Page 3

Executive Summary

There has been, of late, considerable interest in the topic of computer
viruses. The debate has been especially brisk since the so-called
"Internet Virus" of November 1988. At one extreme are those who declare
that viruses are an essentially new phenomenon, against which we are
powerless. At the other end of the spectrum are those who treat viruses as
more of a semantics problem than a technical one, claiming that the problems
they pose have already been solved under different terminology. Where then is
reality? This paper makes the case that the situation, while certainly not
ideal, is not nearly as bleak as some of the alarmists would claim, and that
existing technology and security-oriented procedures are extensible to the
virus threat. Further, these are largely captured in the DoD Trusted Computer
System Evaluation Criteria (TCSEC). However, while the available techniques
are relevant, they supply only partial solutions; perfect and universal
countermeasures against all possible virus scenarios do not exist. If we
are to determine whether or not such are possible, much less develop them,
further R&D activity is required.

Page 4

 I. Introduction: The Symptoms

Viruses are a form of the classical Trojan horse attacks and are characterized
by their ability to reproduce and spread. However, like all Trojan horses,
they first must be "imported" and executed by an authorized user; the attacker
typically dupes an unsuspecting individual into accepting and executing the
virus. The malicious code may be buried in what are presented to be otherwise
useful utilities (e.g., spreadsheets, text editors), which then operate with
the user's own authoritzations to cause harm. The offending code may be
present in a code segment the user "touches," which then attaches itself to
the user's program, without the user ever realizing that he is importing a
virus. For instance, a virus may be implanted in system library utilities
(e.g., sort/merge routines, mathematics packages) and servers.

While a virus (or Trojan Horse) is normally considered to be limited to the
authorizations of the user who is executing the code, the virus can clearly
exploit any flaws in the system that would allow the user to enter
privileged state (although such attacks are more correctly seen as traditional
penetration attacks). If the user who executes the infected code has system
privileges (e.g., a system administrator), then the virus will be able to do
still more severe damage, depending upon the specific privileges available
to it.

The critical point is that viruses depend upon their ability to exploit the
legitimate capabilities of authorized users. In order to be successful, a
virus must replicate and infect other programs without detection.

 II. Treatment and Prevention

As with their biological namesakes, computer viruses come in a variety of
types; their missions can be modification or theft of data, or denial of
service. Their methods of attack will be as numerous and varied as the
weaknesses manifest in systems. Thus, perfect and universal solutions are not
likely; there will be no single solution developed capable of preventing any
and all virus attacks. Such a solution is certainly not currently
available. However, that is not to say that we are powerless to combat
viruses, contain their effects, or limit their capability to do damage. The
defenses against viruses are both technical and procedural. More
specifically, the principles and mechanisms provided in the TCSEC,
especially at class B2 and above, provide a variety of valid defenses
against a large class of malicious code and, when applied effectively, can
severely limit both the scope of the attack and the extent of the damage.

 A. Technical Measures

 1. Trusted Computing Base

The TCSEC has, as a central theme, the extremely strong notion of a Trusted
Computing Base, or TCB (i.e., the implementation of the Reference Monitor
concept). In essence, the TCB is the central policy enforcement mechanism for
the computer system, mediating the actions of all system users and user

Page 5

processes. Among the important characteristics of the TCB is that it be
always invoked (i.e., unbypassable, mediates each and every access) and self-
protecting (i.e., cannot be modified by user code). The consequence of
requiring architectures that provide such mechanisms is to limit the ability
of hostile code to subvert the TCB. Beginning at the C1 level of trust,
fundamental protection mechanisms are required that provide protection of
the system programs and data from unprivileged users. Many existing systems
(e.g., PCs running DOS) lack even these basic protections required at C1, thus
allowing a virus executed by any user to infect any part of the system, even
those most basic to system operation and integrity. Commencing with the B2
level of trust, we expect that there will be no fundamental design flaws
that allow the security mechanisms to be circumvented. Thus, in the absence
of penetration paths, a virus would be limited to attacking users on an
individual basis. This means that the rate at which it could propagate
would be reduced, as would the damage it could inflict.

It can be argued that a virus capable of infecting each and every user in
the system (one that was present in the text editor, for instance) would be
reasonably effective at accomplishing some missions (e.g., denial of service).
Thus, the value of an intact TCB in the face of an otherwise completely
infected user population is moot. However, it is still true that a strong and
self-protecting TCB, at a minimum, forces a virus to infect users one at a
time. It can also prevent some forms of attack (see 2.b, Mandatory Access
Controls, below), and assure the existence and protection of the audit data by
which viruses may be detected and traced. In fact, a strong TCB represents
the central protection mechanism that a virus must overcome in order to infect
the text editor in the first place.

 2. Access Controls

Among the fundamental principles that provide the foundation to the TCSEC is
that of policy enforcement, the need for the computer system to enforce an
access control, or sharing, policy. For both technical and historical
reasons, the principle of policy enforcement translates in the TCSEC into
access control mechanisms. Specifically, these are:

 a. Discretionary Access Control (DAC)

Discretionary Access Control provides the mechanisms that enforce user-defined
sharing, also known in some communities as "need-to-know." Beginning at C1,
the TCSEC requires that it be possible for the owner or manager of each data
file to specify which users may access his data, and in what modes (e.g.,
Read, Modify, Append). Clearly, such a mechanism provides control over both
acquisition and modification of data by Trojan horses and viruses. In order
for the malicious code to carry out its mission, it would have to be
executed by someone who already possessed valid permissions against the data
being targeted. If that user is not the owner, then the capability of the
attack code to do harm would be limited by the allowed permissions (e.g., if
the user who was being attacked had "READ-ONLY" access, the attack code
could copy the data, but could not modify or erase it). While discretionary
access control mechanisms provide relatively weak protections, they do
constitute a hurdle that a virus must overcome, and can slow the rate at which

Page 6

the virus propagates.

 b. Mandatory Access Control (MAC)

Mandatory Access Control provides those mechanisms that enforce corporate
policy dealing with the sharing of data. Examples of such polices would be:
"only members of the payroll staff may read or change payroll data," and
"classified data may only be accessed by those having the appropriate
clearances." Beginning at the B1 level, the TCSEC requires computer systems to
be capable of enforcing MAC as well as DAC. That is, the system must be
able to enforce those more formal rules dealing with either, or both, levels
of sensitivity (e.g., DoD classification scheme) and categories of information
(e.g., payroll, medical, R&D, corporate planning). Thus, the ability of a
user to access and manipulate data is based upon the comparison of the
attributes of users (e.g., "member of payroll department," "member of R&D
staff," "management," or "clearance level") with the attributes of the data to
be accessed (e.g., payroll data, R&D data, classification level). Because
it is required that the TCB control and protect these attribute designators
(or, "labels"), they constitute a "hard barrier" for a virus, effectively
limiting the scope of what it may do; in a properly designed and implemented
system a virus would be unable to effect any changes to the labels. This
means, for instance, that a virus that is being executed by someone in the
PAYROLL department would be limited to doing damage strictly within the set of
data that is labelled accordingly. It would have the potential to modify or
destroy PAYROLL data, but not access R&D or MEDICAL data. Additionally, a
virus could not change any labels, which means that it is unable to prevent
PAYROLL data from being passed to anyone who is not a member of the payroll
staff. Likewise, a virus could not cause "SECRET" data to be downgraded.
In short, MAC is an extremely strong mechanism, which prevents any process,
including a virus, from making properly labeled information available to users
who are not authorized for the information. Systems that achieve TCSEC levels
of B2 or greater essentially guarantee that information will not be
"compromised," i.e., no malicious code can violate the restrictions implied by
the labels.

It needs to be noted that the way in which mandatory controls are typically
used is to prevent compromise, which is to say that the emphasis is on
preventing "high" data from being written into a "low" file. This does not,
in itself, prohibit viruses from propagating, either via a "low" user
writing into a "high" file, or a "high" user importing software from a "low"
file. However, it should be noted further that the mandatory controls provide
the opportunity for implementing similar controls for writing (or importation)
as for reading. Such controls are usually seen as implementing mandatory
integrity policies, such that the ability to modify files is based upon a
set of integrity labels, analogous to the classification labels used to
regulate the reading of data. Some systems exist (e.g., Honeywell SCOMP) that
have implemented such mechanisms.

 3. Audit Trails

The collection of audit data is a traditional security mechanism that provides
a trace of user actions such that security events can be traced to the actions

Page 7

of a specific individual. The TCSEC requires, commencing at class C2, that
the TCB "...be able to create, maintain, and protect from modification or
unauthorized access or destruction an audit trail of accesses to the objects
it protects." Because an effective virus depends upon its ability to infect
other programs and carry out its mission without detection, audit data
provides the basis not only for detecting viral activity, but also for
determining which users have been infected (i.e., by identifying which user is
responsible for the events in question). Clearly, the collection of data is
merely the foundation for detection. To fully implement a sound program,
audit reduction and analysis tools are also required. These are also provided
for in the TCSEC. Considerable advancement in this arena is reflected by the
recently developed intrusion detection systems; sophisticated real-time
audit analysis and event-reporting systems, some based on artificial
intelligence (or, "AI") techniques. These typically provide extensive
capability for detecting a variety of anomalous behavior, and thus can be
"tuned" for known or suspected viral patterns. While the available systems
are still largely developmental, the early results are quite promising.

 4. Architecture

While it is certainly important to identify the correct set of security
features that are needed in a system, it is equally important to provide the
assurances that the features work as intended, are continually present, and
are uncircumventable. Such assurances are provided by the underlying
architecture, namely, the hardware support for the features, and the
hardware and software design. The TCSEC stresses the importance of
architecture and adequate hardware support for the security mechanisms. Even
at the lowest level of trust defined by the TCSEC (i.e., C1) fundamental
protection mechanisms are required that provide protection of the systems
programs and data from unprivileged users. Such protection is usually
implemented by multistate hardware. Starting with B2, the TCSEC places strong
emphasis upon design, design analysis, and architectural features that provide
for isolation of user programs from each other as well as isolation of
system programs from user programs. Such mechanisms not only prevent
viruses from casually infecting system programs (e.g., the TCB), but also make
it more difficult for the virus to spread from user to user.

As an example of the gain to be realized by the right choice of system
architecture, type-enforcement architectures are worthy of special note.
These systems provide the potential for extremely fine-grained control of
executing code, such that a virus would be incapable of performing any
action that is not explicitly allowed by the type-enforcement mechanism. And,
because all access to data and resources is via a common, central mechanism
(i.e., the type manager), protection need only be focused on the code
authorized to manipulate the data and resources, rather than attempting to
protect all user programs. By way of illustration, such systems could quite
easily enforce the following policy, or set of access rules, which a bank
might wish to enforce:

* Tellers may make changes only to those accounts for which they
are authorized.

* They may only make changes to specific fields (e.g., may

Page 8

 not change the account number, depositor name).

* They may only make the changes authorized between the hours of
 9:00 a.m. and 5:00 p.m., Monday through Friday.

* Transactions that exceed $1,000 require the authorization of a
 supervisor, while transactions that exceed $5,000 require the
 authorization of the bank manager.

The capabilities of a virus that attached itself to a teller's process in
such a system would be, mildly speaking, somewhat circumscribed.

 5. Least Privilege/Role Enforcement

A virus that is executed by a user with privilege (i.e., a user that is
permitted by the system to circumvent some part or all of the system's
security policy) provides an enormous threat to the entire system, because,
in assuming the legitimate user's identity, it would be able to circumvent
the normal controls that protect other users' programs and data. In many
systems, the virus would also be able to circumvent the controls that
protect the system itself from modification.

Least Privilege is a familiar concept in the computer security community,
and deals with limiting damage through the enforcement of separation of
duties. It refers to the principle that users and processes should operate
with no more privileges than those needed to perform the duties of the role
they are currently assuming. That is, a user who may take on more than one
role or identity (e.g., administrator and unprivileged user, Project A and
Project B), should only be given the authorizations needed at the moment,
rather than all the privileges he can assume for any and all roles that may be
assumed. In contrast, many current systems support only a single, all-
powerful system administrator (note especially, the UNIX role of "superuser").
Beginning at the B2 level, trusted systems limit the capabilities of
privileged users to those capabilities necessary to accomplish the
prescribed task. Beginning at the B3 level, privileged users cannot, in their
privileged roles, execute any non-TCB code. The consequence is that, in
such a system, a virus could not infect a privileged user's programs, and thus
could not exercise his privileges. In addition, at B3 and higher,
privileged functions that may modify any security-critical system data or
programs require the use of "trusted path" (i.e., require an explicit,
unforgeable, action from the privileged user) in order to prevent these
actions from being performed without the explicit knowledge and cooperation of
the privileged user. This means that no virus could affect security
critical data or programs surreptitiously, since it could not cause any
modifications without the privileged user becoming aware of the requested
actions, thus making the virus visible.

 6. Identification and Authentication

Identification and authentication ensures that only authorized users have
any access to the system or information contained on the system. It also
forms the basis for all other access control mechanisms, providing the

Page 9

necessary user identification data needed to make decisions on requested
user actions. While passwords are the oldest and perhaps the most familiar
form of personal identifiers used to authenticate users to computer systems,
also available today are biometric techniques and "smart card" devices.

 B. Procedural and Administrative Measures

While technical measures are necessary for controlling what code segments a
process may access, what actions it may take, and the conditions under which
it can operate (i.e., what goes on inside the computer), total system security
also involves effective site security procedures and system management.
This is particularly true because poor procedures can negate the positive
effects of some of the technical controls. As an example, audit data
collected by the system, and the availability of even the most sophisticated
audit analysis tools are of little value if the audit logs are never reviewed,
nor action ever taken as a result of questionable activity.

The following should in no way be seen as an exhaustive list of procedures and
management practices effective in addressing the virus threat. Rather, it
is intended to be merely illustrative of the manner in which procedural
controls are complementary of technical capability.

 1. Passwords and Password Management

Historically, passwords have been among the first targets on which an attacker
would focus attention. They have traditionally been an easy target with
high payoff potential. Because a person's password is often the key to all
his data and authorizations, they are analogous to a safe combination. By
extension, attacking the password file is akin to targeting the safe that
holds the combinations to all the other safes in the building. Thus, good
password management and practices can go a long way toward limiting virus
attacks. A virus counts on its ability to infect other programs. Thus,
either the target must import the virus and execute it as his own (i.e.,
with his own privileges and authorizations), or the virus must be able to
"become" the user to be infected by invoking his password. (It might be
noted, in passing, that the November 1988 Internet virus contained extensive
password attacks). If the virus cannot successfully log in as an arbitrary
user (e.g., by stealing or guessing valid passwords), then it is limited to
attempting to fool users into executing the virus code. The trivial ease with
which user passwords can be guessed and entire password files can often be
attacked is usually nothing short of shocking. Truly effective
countermeasures to such attacks are easy to implement and relatively
inexpensive. They often amount to not much more than sensible management.

 2. Configuration Control

A virus represents code that was not intended to be part of a program or the
system. Thus, procedures for maintaining valid and known system
configurations, for validating and approving shared code (e.g., software
library routines), and for distributing approved programs and media (e.g.,
diskettes) can provide further obstacles to viral infestation.

Page 10

 3. Operational Procedures

While there may be some commonality across computer sites, it is also true
that each site will offer its own unique set of problems. Thus, operational
procedures typically need to be tailored to fit the needs of the particular
environment, and defenses against viruses will need to be designed into the
procedures that govern the day-to-day operation of the site. As an example,
recovery from a known or suspected virus attack might require a clean copy
of the system. This, in turn, implies procedures for verifying the source and
correctness of the backup copy, protecting it from modification until it is to
be installed, and for installing it safely. Likewise, management policies and
procedures dealing with the importation of code can also provide a measure of
resistance to viruses. The establishment of the policy will tend to
heighten awareness of the danger of bringing unknown software into the work
environment, while effective procedures for controlling the importation of
software will make it more difficult for a virus to be introduced.

 4. Facility Management

While a computer system may provide a variety of security-related
mechanisms, they must be used and, more importantly, used correctly, if any
measure of protection is to be achieved. Large, complex systems offer a
special challenge, in that there are typically a variety of configuration
options, and can support a large number or users, which may be grouped into
different "communities" and classes, each with unique attributes, security
restrictions and privileges, and with a different view of the system. This
translates into a particularly difficult job for the system security
administrator; it is imperative that he get everything right
simultaneously. There will be many opportunities to configure the system such
that needed security features are not active, or that the choice of options
invalidates the action of a security feature that was activated. The second
case is probably worse, because the security administrator believes that he
has activated a security feature when, in fact, he has inadvertently caused
the desired protection mechanism to be rendered ineffective. In short, the
desired security characteristics of the system, while achievable, can easily
be lost in the complex detail of configuring and maintaining an operational
environment. Thus, it is critical that there be support for the system
administrators such that they can make effective use of the available security
features of, and configure and provide life-cycle support for, the level of
policy enforcement needed. Toward this end, the TCSEC, at all levels, demands
that the vendor provide the purchaser of the product a "Trusted Facility
Manual," a document that describes, in a single volume or chapter, all the
security mechanisms supported by the system, and provides guidance on how to
use them. It is a document aimed explicitly at the system security
administrator, and as such, it provides the information necessary to fully
understand system security mechanisms, how to use them properly, and the
potential harm of poor implementation and configuration choices (e.g.,
insufficient auditing).

 5. User Awareness

Page 11

Virtually every shared-resource system available today provides facilities for
users to specify some level of protection for their data. These may be in the
form of User/Group/World mechanisms, Access Control Lists (ACLs), or other
features that allow users to specify how, and with whom, information is to
be shared. However, in order to be effective, the features must first be
used, and they must also be used properly. This clearly means that the
users need to be cognizant of the protection features that are provided to
them, and understand how they operate. Here also, the TCSEC provides
support for this level of user awareness in that it requires that the vendor
provide a separate document (i.e., the Security Features User's Guide),
explicitly aimed at system users, which apprises them of the security
mechanisms that are available to them. While, as noted earlier, most user-
specifiable protection mechanisms are not proof against determined hostile
attack (at least, not in most current implementations), such protection
features do provide a barrier that a virus must overcome; it is clearly easier
to steal or damage files that are not protected than those that are. It is
certainly easier for a virus to escape detection if there exist no system-
enforced prohibitions against the actions it is attempting to carry out.

 6. System Evaluations

It is standard practice, at least within the DoD and Intelligence communities,
to have systems undergo an accreditation process, a formal and reasonably
well-defined process for determining the acceptability of systems. The
critical facet of the process is centered about the "certification," which
involves the assessment of the system capabilities as measured against the
original requirements definition (e.g., the RFP, system specifications), and
typically also takes into account any system vulnerabilities that have been
discovered. The certification process is a technical assessment of the
system, and thus subjects the system to some level of technical scrutiny.
Thus, any flaws, either in system design or in implementation detail, are more
likely to be discovered. This is a direct benefit of the current evaluation
process directed toward the evaluation of products against the TCSEC. The
evaluation process will, in addition to assuring that the TCSEC requirements
are satisfied, tend to discover and correct poor design, poor implementation
choices and, in some cases, will discover and correct penetration paths.
Clearly, processes that find and correct errors and eliminate penetration
paths will tend to raise the cost to the attacker.

 C. Synopsis of Countermeasures

As discussed earlier, the mission of a virus can be classified as one or
more of the standard threats to information security, namely, unauthorized
modification, unauthorized disclosure, and denial of service. Technical as
well as procedural and administrative countermeasures exist that address these
threats, and thus will, in general, limit the success of malicious code
attempting to carry out such attacks.

a. Identification and authentication, discretionary access controls, process
isolation, and auditing are relevant countermeasures for the virus whose

Page 12

mission is to destroy or modify user data. Likewise, TCB protection, least
privilege, trusted path, and auditing will also serve as valuable
countermeasures against the virus whose mission is to destroy or modify system
programs and data structures.

b. Identification and authentication, mandatory access controls, and
discretionary access controls provide effective countermeasures against
viruses whose mission is to cause unauthorized disclosure of information.

c. Because infection requires that the virus be able to modify or replace some
existing program, all of the technology and procedural countermeasures that
are designed to prevent unauthorized modification of programs will make it
harder for a virus to attach itself to legal user processes.

d. The current state of the art in computer security provides only very
limited countermeasures against denial of service. Identification and
authentication mechanisms ensure that only authorized users have access to
system resources, while auditing allows the system administrator to
determine to what extent particular users use or abuse system resources.
These controls thus ensure that a virus can attack only those system resources
that the infected user is allowed to use, as well as keeping a record of
utilization that may make virus detection easier.

 III. Summary

Clearly, as stated above, there are no universal cures; no single set of
procedures and technical measures guaranteed to stop any and all possible
virus attacks. However, this is not different from any other everyday
security situation. Specific mechanisms tend to be designed to combat
specific dangers, in the same way that vaccines are developed to combat
specific diseases. Thus, preventive measures are intended to raise the cost
of attacks, or to make it less likely that a specific class of attack will
be successful. Similarly for viruses. While viruses can exploit any and all
flaws in our computer systems and networks, they also tend to be classes of
attacks with which we are already familiar. Thus, while there is valid
concern for our vulnerability to virus attacks, a dispassionate analysis shows
that our previous experience in computer security is relevant - the protective
measures and technology we have developed are directly applicable, and provide
a good baseline for making headway against these attacks. In addition, good
environmental controls are critical; while technical measures are necessary
for controlling what data and resources a user process may access, what
actions it may take, and the conditions under which it can operate (i.e., what
goes on inside the computer), total system security also involves effective
procedures and system management.

On the one hand, it may be argued that viruses present no new technical
challenges. The attacks they carry out are the attacks that have been
postulated virtually since the advent of time-sharing. However, the
intellectual process is such that one determines a threat, or attack scenario,
and then develops specific countermeasures. Thus, the classical approach

Page 13

has led us to consider attacks and develop responses on an individual
basis. A virus not only propagates, but may also carry out any or all known
attacks, thus potentially presenting us with a universal set of attacks in one
set of hostile code. However, what is truly revolutionary about viruses is
that they change the way in which we will have to view the processing and
communications support available to us, in the same way that "letter bombs"
would cause us to radically change the way we viewed the postal system,
i.e., from beneficial and useful to hostile and potentially dangerous.
Where we have previously put great confidence in our computing resources
("If the computer said it, it must be correct"), we will now have to
consider those resources as potentially hostile.

Viruses also will cause us to change our view of the very intellectual
environment - the sharing of software can no longer be as casual as it was
once was. Perhaps this should not be surprising. The attacks that were
originally postulated and designed against (e.g., penetrations, Trojan horses,
trapdoors) were predicated on a relatively uncomplicated computing
environment. The communications explosion now confronts us with a
considerably more complex, richly interconnected computing and
communications environment. In this environment, viruses are the concern.
This means that, while our previous experience is extensible to the new
threats, R&D is still needed. While there is considerable debate over whether
or not viruses present a completely new set of problems, there is certainly no
disagreement concerning our abilities to combat them; most will concede
that, at best, today we have only partial solutions. Perfect solutions may be
possible, but a better understanding of the root technical issues, development
of theory, and testing of countermeasures is required before we can know for
certain.

In short, viruses and other forms of malicious code are seen as an extension
of classical computer security threats into the current computing and
communications environment. The capabilities we have already developed to
combat the threats of yesterday apply perfectly well against viruses, but
are not perfect solutions. If we are to develop still better solutions, R&D
in this area is critical.

Page 14

APPENDIX

Analysis of Internet Virus

and the Evaluation Process

 I. The Issue

Among the first questions asked within the NCSC immediately following the
November Internet Virus attack was, "Could the attack have been prevented,
or at least ameliorated, by the product evaluation process?" It is
instructive to determine the impact the TCSEC requirements and the current
evaluation process would have had on the virus and the flaws it was able to
exploit.

The following assumes that the reader is familiar with the details of the
specific attacks, and no effort is made to describe or otherwise elaborate
on the technical details of the virus.

 II. The Analysis

The question to be answered is, "What effect would trust technology and/or
product evaluation have had on the effectiveness of the virus?" The responses
fall into two main areas: methods of attack (i.e., which flaws or features
were exploited), and the effects of the attack.

 a. Infection

The virus used three methods to infect other systems: 1) a subtle bug in
the "finger" daemon software, 2) the "debug" feature of the "sendmail"
program, and 3) the ability of a user to determine other users' passwords.

The bug in the "finger" daemon (or, fingerd) software would likely not be
caught in a C1-B1 level evaluation. There is a moderate chance that it
would have been found in a B2-A1 evaluation. If discovered in any evaluation,
a fix would not have been required by the NCSC as the problem would not affect
the system's ability to enforce the security policy; it does not appear in the
TCB, but rather in user space. Most vendors would, however, fix the bug
simply to make the system more robust.

At the same time, it is important to note that this attack was successful
largely because other routines, which made use of fingerd, did not perform the
bounds checks required to catch the error being exploited. A system being
designed against the TCSEC would be sensitive to the need for complete
parameter checking, at least for security-critical or otherwise privileged
codes. Additionally, the evaluation process, at any level, would likely
identify fingerd as code being used by privileged programs, thus raising the
probability that the flaw would either be found or obviated. This is

Page 15

clearly the case for systems at B2 and beyond; while the flaw that allowed the
virus to attack users might still appear (depending on the implementation
choices made), the B2 requirements are such that privileged processes would
not be dependent on any unevaluated code.

The debug feature of sendmail had a moderate chance of being discovered in a
C1-B1 evaluation. The feature would almost certainly have been discovered
in a B2-A1 evaluation. When discovered, the team would only have been able to
force the vendor to document the feature, as its presence would not affect the
system's ability to enforce the security policy.

Here also, it is fair to point out that in a product that was designed to
conform with TCSEC requirements, sendmail might well have been seen as
integral to the TCB (i.e., a security-critical process). As such, it would
have been more closely scrutinized and, beginning at B2, been subjected to
penetration testing. To the extent, however, that sendmail is strictly within
user space (i.e., not within the TCB boundary), the evaluation process is
not likely to turn up flaws such as was exploited by the virus.

The ability of a user to generate other users' passwords as a result of
being able to read the password file (albeit encrypted) would have been
detected in any evaluation, and the vendor would have been forced to correct
the problem. It is important to note that the virus contained an extensive
capability to guess user passwords. While it is not clear to what extent
the virus actually resorted to this attack, inexpensive and well-known
password management procedures would have a major impact on password
attacks, and thus would considerably impair the propagation rate of any
virus that depended on them.

 b. Effects of the Virus

The primary effect of the virus was the consumption of processor time and
memory to the point that nonvirus processes were unable to do any useful work.
For the systems in question any valid user could have produced the same effect
because the system enforces few useful limits on resource utilization. The
current state of the art in trust technology provides no better than partial
solutions for dealing with the issues of inequitable use of system
resources. B2-A1 evaluations will address so-called "denial of service"
problems, but the presence of problems of this type will not adversely
affect the rating. That is, evaluators will look for, and report on,
attacks that can monopolize system resources or "crash" the system.
However, since no objective way yet exists to measure these effects, they do
not influence the rating. Instead, it is left to the accreditation
authority to determine the impact in his environment, and to implement any
necessary countermeasures (e.g., quota management routines, additional
auditing).

Page 16

References

1. Continuing Education Institute, "Software-Oriented Computer
Architecture," Course notes, 1984.

2. Department of Defense, Department of Defense Trusted Computer System
Evaluation Criteria (DoD 5200.28-STD), December 1985.

3. Gasser, M., Building a Secure Computer System, Van Nostrand Reinhold, 1988.

4. Gligor, V. D., "Architectural Implications of Abstract Data Type
Implementations," Proceedings of the International Symposium on Computer
Architecture, Philadelphia, PA, May 1977.

5. Lunt T., "Automated Audit Trail Analysis and Intrusion Detection: A
Survey," Proceedings of the 11th National Computer Security Conference,
October 1988.

6. Spafford, E. H., "The Internet Worm Program: An Analysis," Purdue Technical
Report, CSD-TR-823, November 28, 1988.

